

Solvent Testing:

Trichloroethylene

vs. SolVantage[®] Vapor Solv

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

Purpose of Testing

- Vapor Solv is a environmentally responsible TCE replacement
- Testing effectiveness at a lower temperature (-94° F)
- Determine if it works just as well as our current vacuum degreaser system (Trichloroethylene)
 - Parts analyzed at multiple stages of process
 - Parts will be checked using Final Inspection criteria

Purpose

Setup

Initial Setup

- Three different substrates were chosen
 - Copper
 - Brass
 - Stainless Steel
- Scanning Electron Microscope (SEM) images of the raw parts were obtained
- Parts were soaked in cutting oil for 24 hours
- SEM images were obtained of the soiled parts
- Energy Dispersive Analysis X-Ray (EDAX) analysis of soiled and degreased parts

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

SEM Images (Brass Parts)

Raw Brass Part

15kV X35 500 Am 26 44 SEI 15kU X15 500 Am 24 47 SEI

Soiled Brass Part

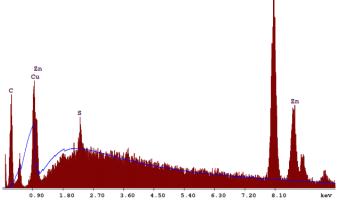
Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts

Conclusions

EDAX Analysis of Soiled Brass Part

Element	^r Quantif Normaliz Le : Defa	ed	(Standard	lless)		
Element	Wt %	At %	K-Ratio	Z	A	F
C K S K CuK ZnK Total	29.61		0.0273 0.0028 0.5246 0.2828		0.1518 0.6778 1.0016 1.0023	1.0000
Element	Net Int	e. Bk	gd Inte.	Inte. Er	ror	P/B
C K S K CuK ZnK	36.28 6 8.16 75 165.90 17		6.78 75.92 17.38 14.80	2.75 21.92 1.21 2.11		5.35 0.11 9.55 4.41

15kU

Setup

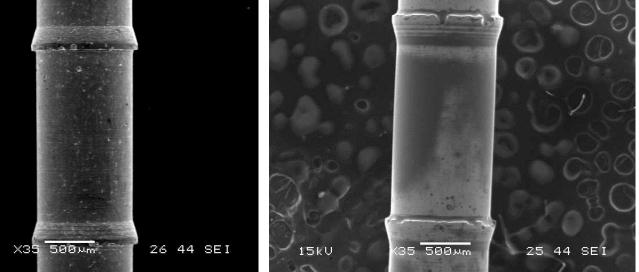
Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts


Conclusions

SEM Images (Copper Parts)

Raw Copper Part

Soiled Copper Part

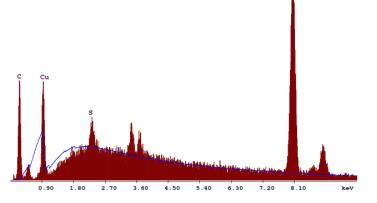
Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts

Conclusions

EDAX Analysis of Soiled Copper Part

EDAX ZAF Element SEC Tabl	Normaliz	ed	(Standard	lless)			
Element	Wt %	At %	K-Ratio	Z	А	F	
CK	19.78	56.31	0.0382	1.1773	0.1639	1.0002	
SK	0.97	1.03	0.0075	1.0939	0.7039	1.0000	
CuK	79.25	42.66	0.7462	0.9392	1.0025	1.0000	
Total	100.00	100.00					
Element	Net Int	e. Bk	gd Inte.	Inte. Er	or	P/B	
СК	43.14		5.12	2.40		8.43	
SK	18.32		69.72	9.70		0.26	
CuK	200.32		16.02	1.08	1	12.50	

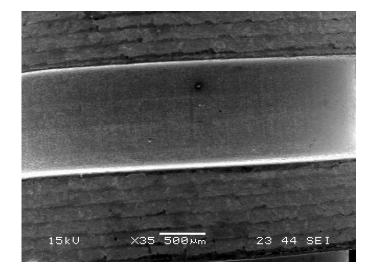
Purpose

Setup

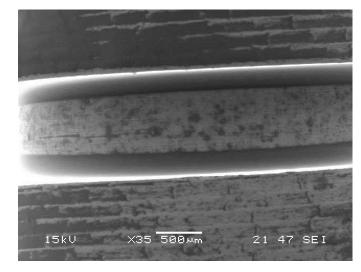
Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts


Conclusions

SEM Images (Stainless Steel Parts)

Raw Stainless Steel Part

Soiled Stainless Steel Part

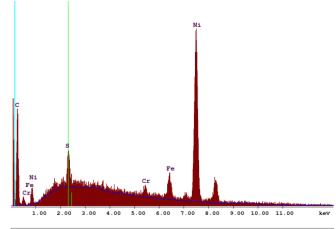
Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts

Conclusions

EDAX Analysis of Soiled Stainless Steel Part

Element	Quantif Normaliz le : Defa	zed	(Standard	lless)		
Element	Wt %	At %	K-Ratio	Z	А	F
	1.54 5.02 63.81	1.70 0.83 2.52	0.0598 0.0153 0.0155 0.0555 0.5961	0.9230		1.0003 1.0923 1.1966
Element	Net Int	e. Bk	gd Inte.	Inte. Er:	ror	P/B
C K S K CrK FeK NiK	62.80 35.00 12.28 29.50 196.52		0.60 45.24 23.02 16.18 10.72	1.80 4.53 8.79 3.77 1.06		04.67 0.77 0.53 1.82 18.33

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

Degreasing Process

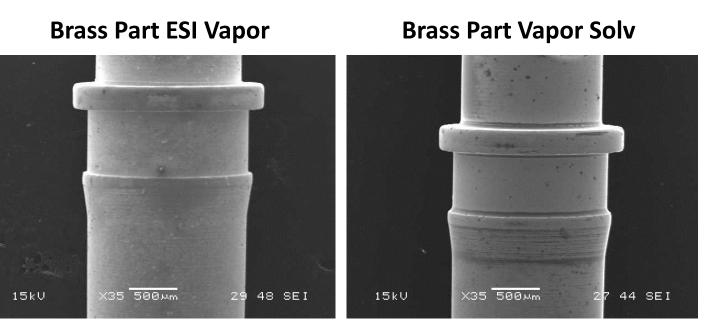
- Parts were evenly divided
- One set of brass, copper, and stainless steel parts were processed through our standard degreasing process.
 - 130°F
 - 24 Minutes
- The other set were degreased using the Vapor Solv solvent in the lab under the hood on a hot plate
 - 100°F
 - 24 Minutes
- SEM images were obtained after processing

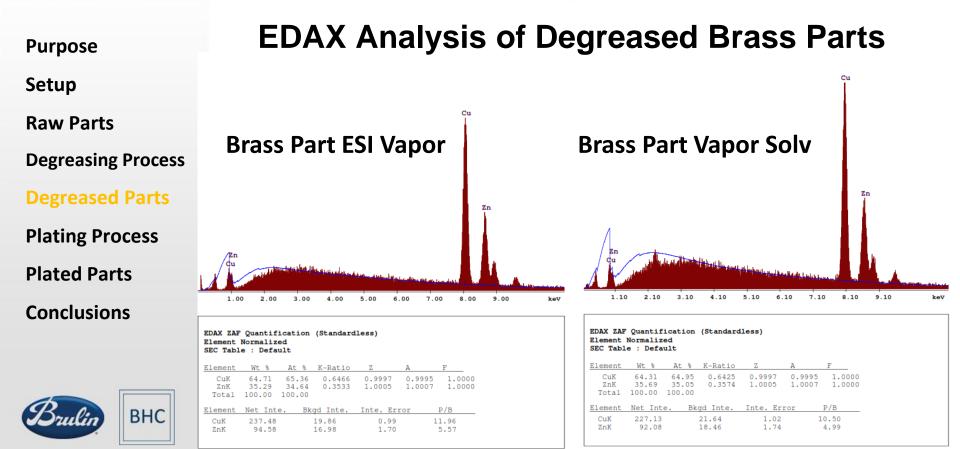
Purpose

SEM Images (Brass Parts)

Setup

Raw Parts


Degreasing Process


Degreased Parts

Plating Process

Plated Parts

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

SEM Images (Copper Parts)

Copper Part ESI Vapor

15kU X3 500Am 25 48 SEI 15kU X3 500Am 28 48 SEI

Copper Part Vapor Solv

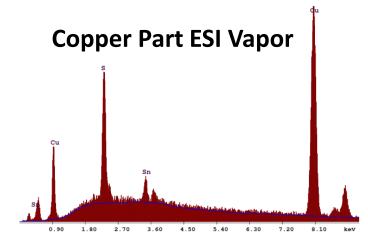
Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts

Conclusions

EDAX Analysis of Degreased Copper Parts

Element	'Quantif Normaliz .e : Defa	ed	(Standard	lless)		
Element	Wt %	At %	K-Ratio	Z	А	F
S K SnL CuK Total		11.51 1.78 86.71 100.00	0.0292		0.6603 0.9579 0.9977	1.0000
Element	Net Int	e. Bk	gd Inte.	Inte. Er	ror	P/B
S K SnL CuK	189.16 34.86 402.34		72.40 80.64 22.72	1.37 5.68 0.74		2.61 0.43 17.71

Element	Normaliz e : Defa	ed	(Standard	less)		
Element	Wt %	At %	K-Ratio	Z	А	F
C K S K	8.71 0.31	33.95 0.45		1.2178	0.1528	
			0.0351 0.8481			1.0000
Element	Net Int		gd Inte.	Inte. Er:	ror	P/B
C K S K	28.93	1	8.36	3.30		3.46
SnL CuK	39.60 359.42		87.00 26.64	5.22		0.46 13.49

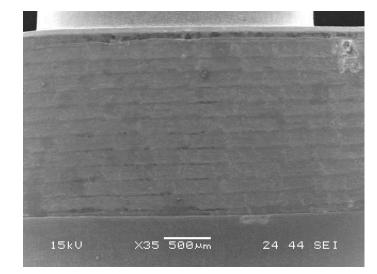
Purpose

Setup

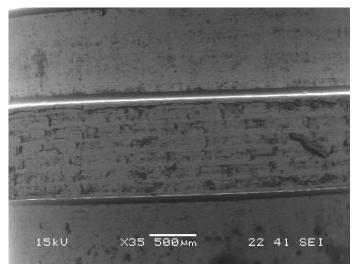
Raw Parts

Degreasing Process

Degreased Parts


Plating Process

Plated Parts


Conclusions

SEM Images (Stainless Steel Parts)

Stainless Steel Part ESI Vapor

Stainless Steel Part Vapor Solv

Purpose

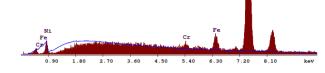
Setup

Raw Parts

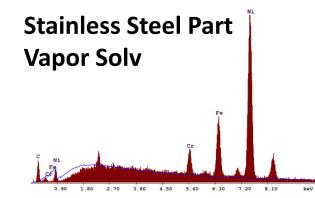
Degreasing Process

```
Degreased Parts
```

Plating Process


Plated Parts

Conclusions



EDAX Analysis of Degreased Stainless Steel Parts

Stainless Steel Part ESI Vapor

	e : Defa	ult				
Element	Wt %	At %	K-Ratio	Z	A	F
CrK	1.08	1.22	0.0116	0.9847	0,9840	1,1066
FeK	3.99	4.18	0.0488	0.9853	0.9938	1.2481
N1K	94.92	94.60	0.9462	1.0007	0.9961	1.0000
Total	100.00	100.00				
Element	Net Int	e. Bk	gd Inte.	Inte. Er	ror	P/B
CrK	10.68		28.54	10,90		0.37
FeK	30.06		21.78	4.04		1.38
NiK	361.26		16.30	0.78		22.16

		ult				
Element	Wt %	At %	K-Ratio	Z	A	F
CrK FeK N1K	13.57	3.32 10.88 57.08	0.0406		0.9884	1.0969
	Net Int		gd Inte.	Inte. Er:	ror	P/B
C K CrK FeK N1K			3.78 27.08 20.40 15.42	4.02 3.78 1.81 0.92		4.67 1.31 4.36 17.14

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

Plating Process

- Separated lots of parts were plated on the Small Manual Line
 - Brass Parts were plated with Nickel
 - Copper Parts were plated with Nickel
 - Stainless Steel Parts were plated with a Woods Strike and then Nickel
- SEM images were obtained after plating

27 43 SEI

X35 500 Mm

27 43 SEI

15kU

X35 500 Mm

15kU

Element

NiK

Net Inte.

508.26

24.82

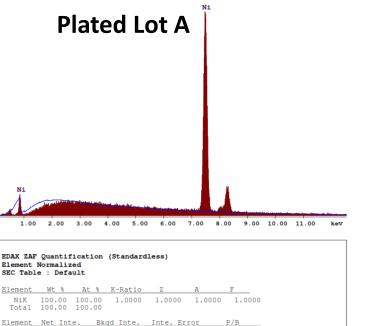
Purpose

Setup

Raw Parts

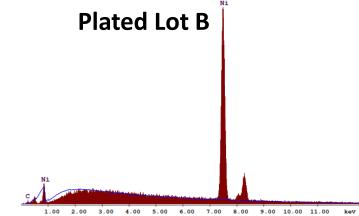
Degreasing Process

Degreased Parts


Plating Process

Plated Parts

Conclusions



EDAX Analysis of Plated Brass Parts

0.66

20.48

EDAX ZAF Element SEC Tabl	Normaliz	ed	(Standard	iless)		
Element	Wt %	At %	K-Ratio	Z	А	F
	0.23 99.77 100.00	1.12 98.88 100.00	0.0004 0.9971	1.1864 0.9994	0.1515 1.0000	
Element	Net Int	e. Bk	gd Inte.	Inte. Er:	ror	P/B
C K NiK	0.59 448.06		4.60 22.54	74.44 0.70		0.13 19.88

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Final Inspection Brass Parts

Plated Lot A

- Average Nickel Thickness: 59.64 microinches
- Tape Test: Pass
- Crush Test: Pass
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Frosty Finish
 & Dull
- Inspected by Tina Gardener

Plated Lot B

- Average Nickel Thickness: 86.58 microinches
- Tape Test: Pass
- Crush Test: Pass
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Voids ID & OD, Nice & Shiny
- Inspected by Tina Gardener

Purpose

Setup

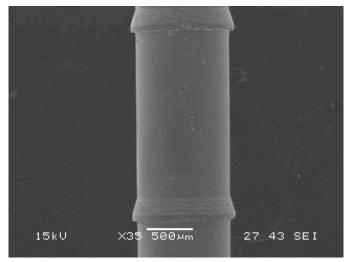
Raw Parts

Degreasing Process

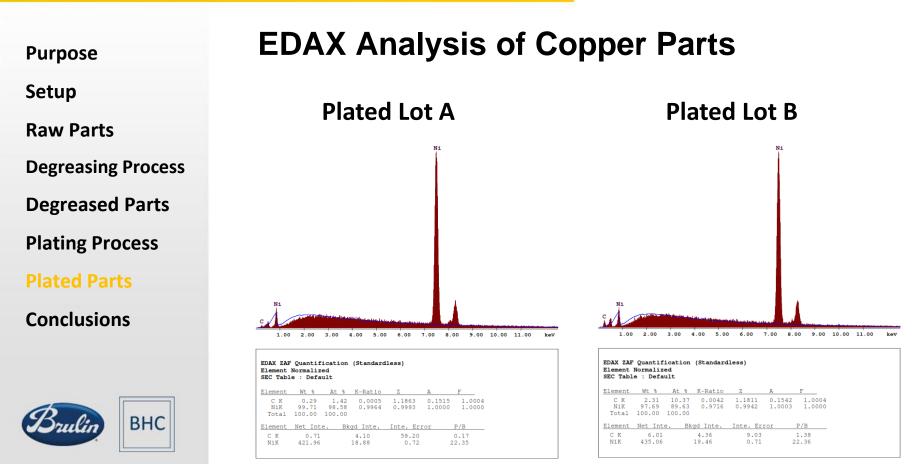
Degreased Parts

Plating Process

Plated Parts


Conclusions

SEM Images (Copper Parts)


15kU X35 500xm 27 43 SEI

Plated Lot A

Plated Lot B

Purpose

Setup

Raw Parts

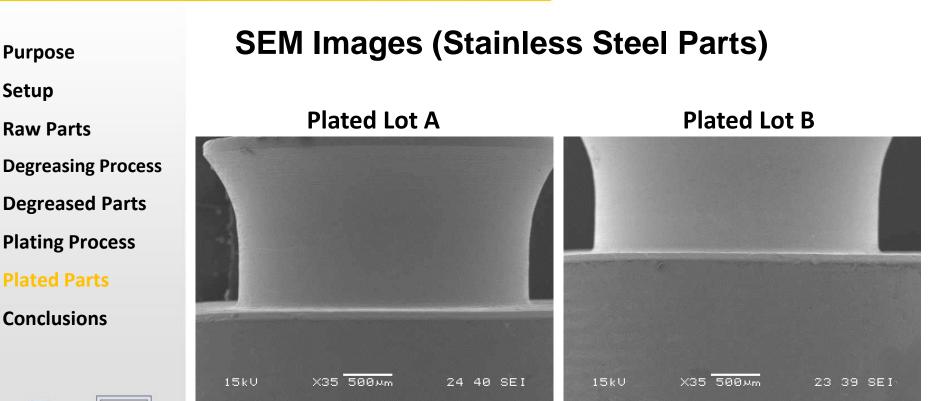
Degreasing Process

Degreased Parts

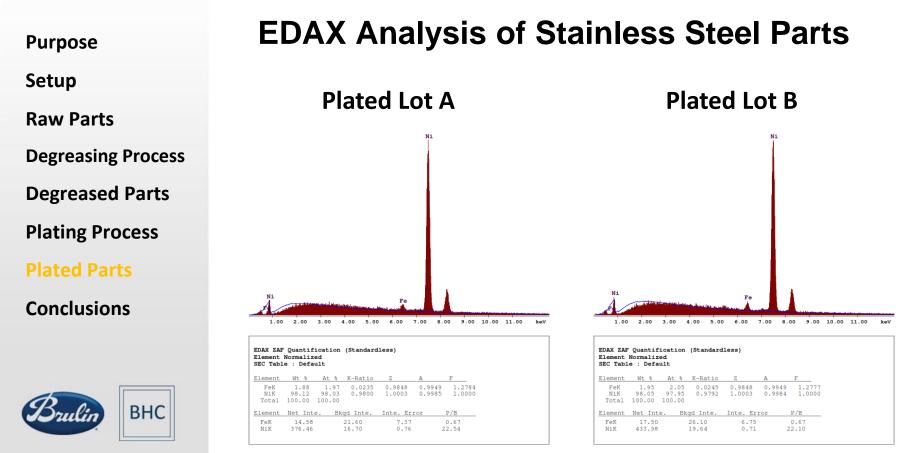
Plating Process

Plated Parts

Conclusions


Final Inspection Copper Parts

Plated Lot A


- Average Nickel Thickness: 197.52 microinches
- Tape Test: Pass
- Crush Test: Pass
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Nice & Shiny, Voids in ID of Tines
- Inspected by Tina Gardener

Plated Lot B

- Average Nickel Thickness: 189.32 microinches
- Tape Test: Pass
- Crush Test: Pass
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Nice & Shiny, No Voids, Little dull on ends
- Inspected by Tina Gardener

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Final Inspection Stainless Steel Parts

Plated Lot A

- Average Nickel Thickness: 139.66 microinches
- Tape Test: Pass
- Crush Test: Failed, Peeling
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Blisters, Peeling, Frosty, Scaley ID
- Inspected by Tina Gardener

Plated Lot B

- Average Nickel Thickness: 137.76 microinches
- Tape Test: Pass
- Crush Test: Failed, Peeling
- Bake Test (350°F 1 hour): Pass
- Visual @ 10X: Peeling OD & ID, Frosty
- Inspected by Tina Gardener

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

- Some soils left on part visually after Vapor Solv treatment, but EDAX showed very similar analyses
- No large difference in plated parts from an EDAX of Final Inspection stand point
- Due to these successes we should scale up our experiment to our small degreasing unit and do more loads

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

Scaled Up Experimentation

- BHC provided ESI with 20 gallons of Vapor Solv.
- Solvent was placed in a Baron-Blakeslee manual degreasing unit that had been wired up by ESI's maintenance.
- Production parts were used and plated as normal.
- These parts were followed to see what issues might have arisen.

Purpose

Setup

Raw Parts

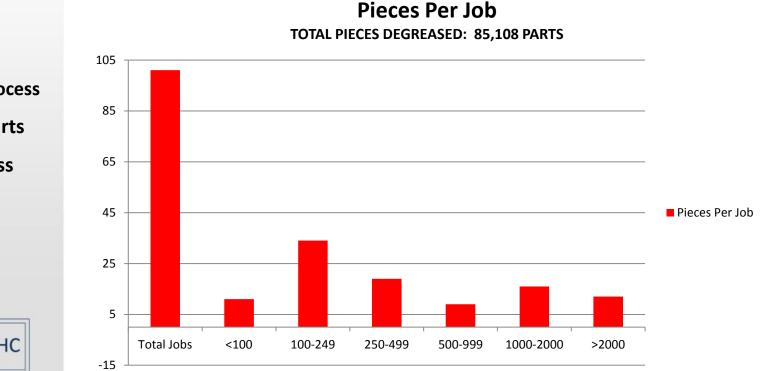
Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions


Brulin BHC

Information Collected

- Customer Name
- Part Number
- Quantity
- Date
- Material
- Plating required
- Number of reworks & the reason
- Any RMA's associated

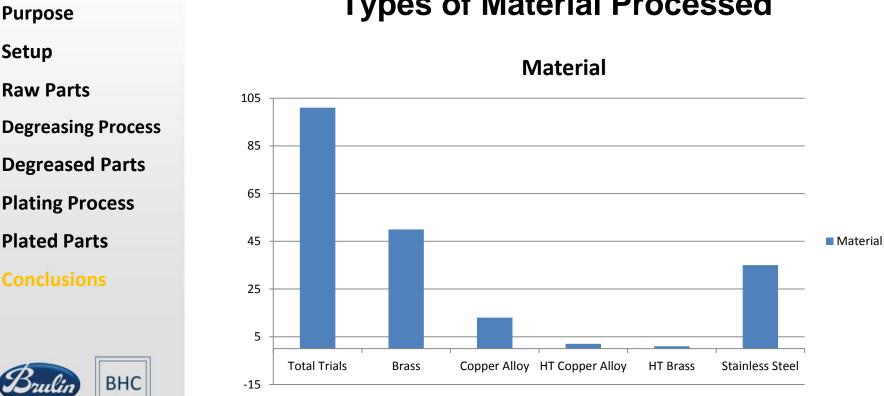
SolVantage® Vapor Solv Testing

Number of Pieces per Load

Raw Parts

Purpose

Setup


Degreasing Process

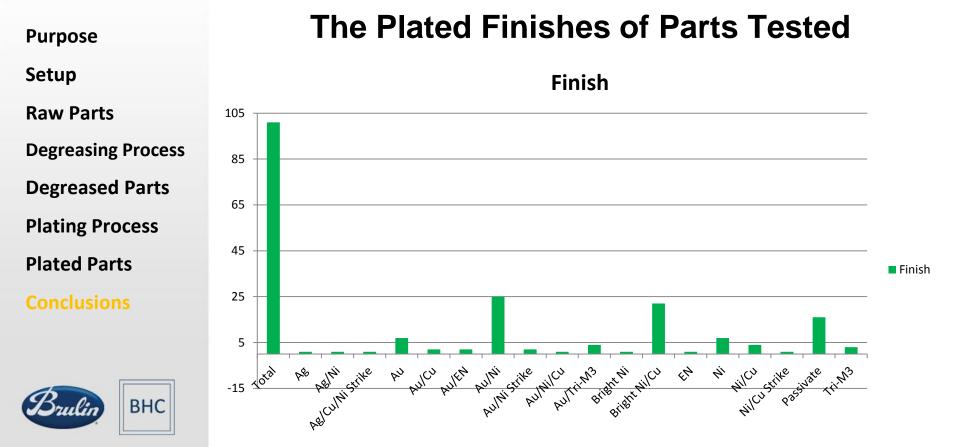
Degreased Parts

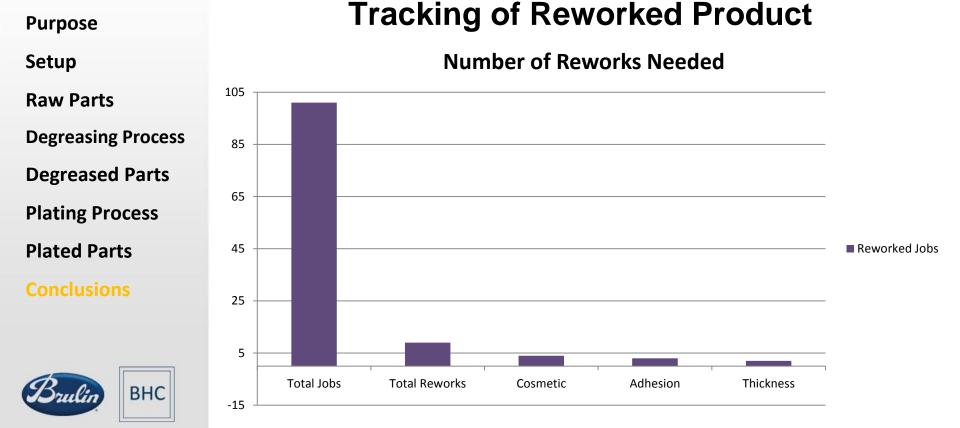
Plating Process

Plated Parts

Types of Material Processed

Setup


Raw Parts


Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Purpose

Setup

Raw Parts

Degreasing Process

Degreased Parts

Plating Process

Plated Parts

Conclusions

Brulin BHC

- Based upon the data collected and the plating results of the wide variety of customer parts processed through the specific ESI plating processes, ESI is converting the Tiyoda Vacuum Degreaser from TCE to Vapor Solv.
- Conversion of the degreaser will require gasketing replacement at a cost of @\$5000.